Solvable groups definable in o-minimal structures
نویسنده
چکیده
Let N be an o-minimal structure. In this paper we develop group extension theory over N and use it to describe N -definable solvable groups. We prove an o-minimal analogue of the Lie-Kolchin-Mal’cev theorem and we describe N -definable G-modules and N -definable
منابع مشابه
Lie-like Decompositions of Groups Definable in O-minimal Structures
There are strong analogies between groups definable in o-minimal structures and real Lie groups. Nevertheless, unlike the real case, not every definable group has maximal definably compact subgroups. We study definable groups G which are not definably compact showing that they have a unique maximal normal definable torsion-free subgroup N ; the quotient G/N always has maximal definably compact ...
متن کاملOn Levi subgroups and the Levi decomposition for groups definable in o-minimal structures
We study analogues of the notions from Lie theory of Levi subgroup and Levi decomposition, in the case of groups G definable in an ominimal expansion of a real closed field. With suitable definitions, we prove that G has a unique maximal ind-definable semisimple subgroup S, up to conjugacy, and that G = R ·S where R is the solvable radical of G. We also prove that any semisimple subalgebra of t...
متن کاملCovers of Groups Definable in O-minimal Structures
We develop in this paper the theory of covers for locally definable groups in o-minimal structures.
متن کاملConnected components of definable groups and o-minimality I
We give examples of definable groups G (in a saturated model, sometimes o-minimal) such that G00 6= G000, yielding also new examples of “non G-compact” theories. We also prove that for G definable in a (saturated) o-minimal structure, G has a “bounded orbit” (i.e. there is a type of G whose stabilizer has bounded index) if and only if G is definably amenable, giving a positive answer to a conje...
متن کاملCartan subgroups of groups definable in o-minimal structures
We prove that groups definable in o-minimal structures have Cartan subgroups, and only finitely many conjugacy classes of such subgroups. We also delineate with precision how these subgroups cover the ambient group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003